Pre-Calculus

Geometry	Algebra
1.01 Transform relations in two	2.01 Use functions (polynomial, power, rational, exponential, logarithmic, logistic, piecewise-
dimensions; describe the results	defined, and greatest integer) to model and solve problems; justify results.
algebraically and geometrically.	a) Solve using graphs and algebraic properties.
1.02 Use the quadratic relations (parabola,	b) Interpret the constants, coefficients, and bases in the context of the problem.
circle, ellipse, hyperbola) to model and	2.02 Use trigonometric and inverse trigonometric functions to model and solve problems;
solve problems; justify results.	justify results.
a) Solve using tables, graphs, and algebraic	a) Solve using graphs and algebraic properties.
properties.	b) Create and identify transformations with respect to period, amplitude, and vertical and
b) Interpret the constants and coefficients	horizontal shifts.
in the context of the problem.	c) Develop and use the law of sines and the law of cosines.
1.03 Operate with vectors in two	2.03 For sets of data, create and use calculator-generated models of linear, polynomial,
dimensions to model and solve problems.	exponential, trigonometric, power, logistic, and logarithmic functions.
	a) Interpret the constants, coefficients, and bases in the context of the data.
	b) Check models for goodness-of-fit; use the most appropriate model to draw conclusions or
	make predictions.
	2.04 Use the composition and inverse of functions to model and solve problems.
	2.05 Use polar equations to model and solve problems.
	a) Solve using graphs and algebraic properties.
	b) Interpret the constants and coefficients in the context of the problem.
	2.06 Use parametric equations to model and solve problems.
	2.07 Use recursively-defined functions to model and solve problems.
	a) Find the sum of a finite sequence.
	b) Find the sum of an infinite sequence.
	c) Determine whether a given series converges or diverges.
	d) Translate between recursive and explicit representations.
	2.08 Explore the limit of a function graphically, numerically, and algebraically.